Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 14(1): 2613, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2320051

RESUMO

Our earlier work has shown that genomic risk for schizophrenia converges with early life complications in affecting risk for the disorder and sex-biased neurodevelopmental trajectories. Here, we identify specific genes and potential mechanisms that, in placenta, may mediate such outcomes. We performed TWAS in healthy term placentae (N = 147) to derive candidate placental causal genes that we confirmed with SMR; to search for placenta and schizophrenia-specific associations, we performed an analogous analysis in fetal brain (N = 166) and additional placenta TWAS for other disorders/traits. The analyses in the whole sample and stratifying by sex ultimately highlight 139 placenta and schizophrenia-specific risk genes, many being sex-biased; the candidate molecular mechanisms converge on the nutrient-sensing capabilities of placenta and trophoblast invasiveness. These genes also implicate the Coronavirus-pathogenesis pathway and showed increased expression in placentae from a small sample of SARS-CoV-2-positive pregnancies. Investigating placental risk genes for schizophrenia and candidate mechanisms may lead to opportunities for prevention that would not be suggested by study of the brain alone.


Assuntos
COVID-19 , Esquizofrenia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Trofoblastos/metabolismo
2.
J Clin Invest ; 131(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1448084

RESUMO

BACKGROUNDThe angiotensin-converting enzyme (ACE) D allele is more prevalent among African Americans compared with other races and ethnicities and has previously been associated with severe coronavirus disease 2019 (COVID-19) pathogenesis through excessive ACE1 activity. ACE inhibitors/angiotensin receptor blockers (ACE-I/ARB) may counteract this mechanism, but their association with COVID-19 outcomes has not been specifically tested in the African American population.METHODSWe identified 6218 patients who were admitted into Mount Sinai hospitals with COVID-19 between February 24 and May 31, 2020, in New York City. We evaluated whether the outpatient and in-hospital use of ACE-I/ARB is associated with COVID-19 in-hospital mortality in an African American compared with non-African American population.RESULTSOf the 6218 patients with COVID-19, 1138 (18.3%) were ACE-I/ARB users. In a multivariate logistic regression model, ACE-I/ARB use was independently associated with a reduced risk of in-hospital mortality in the entire population (OR, 0.655; 95% CI, 0.505-0.850; P = 0.001), African American population (OR, 0.44; 95% CI, 0.249-0.779; P = 0.005), and non-African American population (OR, 0.748, 95% CI, 0.553-1.012, P = 0.06). In the African American population, in-hospital use of ACE-I/ARB was associated with improved mortality (OR, 0.378; 95% CI, 0.188-0.766; P = 0.006), whereas outpatient use was not (OR, 0.889; 95% CI, 0.375-2.158; P = 0.812). When analyzing each medication class separately, ARB in-hospital use was significantly associated with reduced in-hospital mortality in the African American population (OR, 0.196; 95% CI, 0.074-0.516; P = 0.001), whereas ACE-I use was not associated with impact on mortality in any population.CONCLUSIONIn-hospital use of ARB was associated with a significant reduction in in-hospital mortality among COVID-19-positive African American patients.FUNDINGNone.


Assuntos
Antagonistas de Receptores de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Negro ou Afro-Americano , Tratamento Farmacológico da COVID-19 , COVID-19 , Mortalidade Hospitalar/etnologia , SARS-CoV-2/metabolismo , Idoso , COVID-19/etnologia , COVID-19/metabolismo , COVID-19/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptidil Dipeptidase A/metabolismo , Estudos Retrospectivos , Taxa de Sobrevida
3.
Hum Genet ; 140(6): 969-979, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1092066

RESUMO

SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We, therefore, used an integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayesian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait loci (eQTLs) from the Lung eQTL (n = 1,038) and eQTLGen (n = 31,784) studies with published COVID-19 genome-wide association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n = 3,301) with COVID-19 loci. Finally, we determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian randomization (MR). The expression of 18 genes in lung and/or blood co-localized with COVID-19 loci. Of these, 12 genes were in suggestive loci (PGWAS < 5 × 10-05). LZTFL1, SLC6A20, ABO, IL10RB and IFNAR2 and OAS1 had been previously associated with a heightened risk of COVID-19 (PGWAS < 5 × 10-08). We identified a causal association between OAS1 and COVID-19 GWAS. Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal relationship with COVID-19 in the MR analysis; increased plasma levels were associated with an increased risk of COVID-19 and, in particular, severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be prioritized for future investigations. Importantly, this is the first study to demonstrate a causal association between plasma ABO protein and COVID-19.


Assuntos
Proteínas Sanguíneas/metabolismo , COVID-19/epidemiologia , Predisposição Genética para Doença , Pulmão/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , SARS-CoV-2/isolamento & purificação , Sistema ABO de Grupos Sanguíneos/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Estudos de Coortes , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Fatores de Risco
4.
R Soc Open Sci ; 7(11): 200958, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1005759

RESUMO

Angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 have been implicated in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). The expression of ACE2 and TMPRSS2 in the lung epithelium might have implications for the risk of SARS-CoV-2 infection and severity of COVID-19. We use human genetic variants that proxy angiotensin-converting enzyme (ACE) inhibitor drug effects and cardiovascular risk factors to investigate whether these exposures affect lung ACE2 and TMPRSS2 gene expression and circulating ACE2 levels. We observed no consistent evidence of an association of genetically predicted serum ACE levels with any of our outcomes. There was weak evidence for an association of genetically predicted serum ACE levels with ACE2 gene expression in the Lung eQTL Consortium (p = 0.014), but this finding did not replicate. There was evidence of a positive association of genetic liability to type 2 diabetes mellitus with lung ACE2 gene expression in the Gene-Tissue Expression (GTEx) study (p = 4 × 10-4) and with circulating plasma ACE2 levels in the INTERVAL study (p = 0.03), but not with lung ACE2 expression in the Lung eQTL Consortium study (p = 0.68). There were no associations of genetically proxied liability to the other cardiometabolic traits with any outcome. This study does not provide consistent evidence to support an effect of serum ACE levels (as a proxy for ACE inhibitors) or cardiometabolic risk factors on lung ACE2 and TMPRSS2 expression or plasma ACE2 levels.

5.
Sci Rep ; 10(1): 21863, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: covidwho-977274

RESUMO

Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We aimed to identify and characterize genes that are co-expressed with ACE2 and TMPRSS2, and to further explore their biological functions and potential as druggable targets. Using the gene expression profiles of 1,038 lung tissue samples, we performed a weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We explored the biology of co-expressed genes using bioinformatics databases, and identified known drug-gene interactions. ACE2 was in a module of 681 co-expressed genes; 10 genes with moderate-high correlation with ACE2 (r > 0.3, FDR < 0.05) had known interactions with existing drug compounds. TMPRSS2 was in a module of 1,086 co-expressed genes; 31 of these genes were enriched in the gene ontology biologic process 'receptor-mediated endocytosis', and 52 TMPRSS2-correlated genes had known interactions with drug compounds. Dozens of genes are co-expressed with ACE2 and TMPRSS2, many of which have plausible links to COVID-19 pathophysiology. Many of the co-expressed genes are potentially targetable with existing drugs, which may accelerate the development of COVID-19 therapeutics.


Assuntos
COVID-19/metabolismo , Pulmão/metabolismo , Receptores de Coronavírus/metabolismo , Transcriptoma , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Estudos de Coortes , Bases de Dados de Compostos Químicos , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Serina Endopeptidases/metabolismo
6.
Gastroenterology ; 160(1): 287-301.e20, 2021 01.
Artigo em Inglês | MEDLINE | ID: covidwho-796100

RESUMO

BACKGROUND AND AIMS: The presence of gastrointestinal symptoms and high levels of viral RNA in the stool suggest active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within enterocytes. METHODS: Here, in multiple, large cohorts of patients with inflammatory bowel disease (IBD), we have studied the intersections between Coronavirus Disease 2019 (COVID-19), intestinal inflammation, and IBD treatment. RESULTS: A striking expression of ACE2 on the small bowel enterocyte brush border supports intestinal infectivity by SARS-CoV-2. Commonly used IBD medications, both biologic and nonbiologic, do not significantly impact ACE2 and TMPRSS2 receptor expression in the uninflamed intestines. In addition, we have defined molecular responses to COVID-19 infection that are also enriched in IBD, pointing to shared molecular networks between COVID-19 and IBD. CONCLUSIONS: These data generate a novel appreciation of the confluence of COVID-19- and IBD-associated inflammation and provide mechanistic insights supporting further investigation of specific IBD drugs in the treatment of COVID-19. Preprint doi: https://doi.org/10.1101/2020.05.21.109124.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Mucosa Intestinal/enzimologia , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/virologia , Estudos de Casos e Controles , Ensaios Clínicos como Assunto , Estudos Transversais , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/virologia , Estudos Longitudinais , Masculino , Camundongos , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Transdução de Sinais , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA